

Update on IEC Inverter Standards Activity

Greg Ball
DNV KEMA Renewables (formerly BEW Engineering)

Sandia Inverter Reliability Workshop Santa Clara, CA May 1, 2013

IEC Technical Committee (TC) 82 Solar photovoltaic energy systems

- IEC = International Electrotechnical Commission, founded 1906
- Prepares and publishes International Standards for all electrical, electronic and related technologies. These are known collectively as "electrotechnology".
- ~174 TCs and SCs (Subcommittees), and ~700 Project Teams (PT) / Maintenance Teams (MT) carry out the standards work of the IEC

TC 82 Working Groups

<u>WG 1</u>	Glossary
WG 2	Modules, non-concentrating
WG 3	Systems
WG 6	Balance-of-system components
<u>WG 7</u>	Concentrator modules

Joint Working Groups

<u>JWG 1</u>	Small renewable/hybrid systems for rural electrification
JWG 32	Electrical safety of PV system installations

Working Group 6 Balance of System Components

 Scope: Develop BOS standards in the general areas of performance, safety, environmental durability (reliability), quality assurance and quality assessment criteria.

- Co-convenors
 - Greg Ball (US)
 - Vicente Salas (Spain)
- Number of members: 74
 - 66 one year ago
 - Meet twice per year with WG3
 - Typical attendance ~45-50
 - Some house cleaning needed

10	US	2	Italy
10	Korea	1	Czech
9	Germany	1	Finland
7	Spain	1	UK
4	Canada	1	Israel
4	Japan	1	India
3	Australia	1	Kenya
3	Austria	1	Malaysia
3	Switzerland	1	Norway
3	China	1	Thailand
3	Denmark	1	South Africa
3	France		

TC82 Working Group 6 Inverter Standards Activity

Safety

- 62109 Safety of power converters for use in photovoltaic power systems
 - Part 1. General requirements (Published)
 - Part 2. Particular requirements for inverters (Published)
 - Part 3. Particular requirements for PV modules with integrated electronic devices (Drafting)

Anti-Islanding

 62116 - Test procedure of islanding prevention measures for utility-interconnected PV inverters (Published/Maintenance)

Efficiency

 61683 - Photovoltaic system power conditioners - Procedure for measuring efficiency (Published/Maintenance)

Nameplate ratings

- Data sheet and name plate for photovoltaic inverters (Drafting based on existing EN standard)
- Emissions Testing (kicking off)
- BOS Component Qualification:
 - 62093 BOS components for PV systems Design qualification and natural environments (Published/Maintenance)

IEC 62093 -- Scope

- Balance of system components for photovoltaic systems Design qualification natural environments. 1st edition, 2005
- BOS components for PV systems, suitable for indoor our outdoor environments, protected or unprotected
 - Based on module standards IEC 61215 and 61646
 - Modified to reflect features of BOS components
 - Added dust, fungus, insects, shipping vibration, shock, and protection class (mechanical and environmental)
 - Covers a wide variety of equipment in addition to inverters, including batteries and charge controllers

IEC 62093 – Objectives and Tests

- Demonstrate components capable of maintaining performance after exposure to expected environmental conditions
 - Within reasonable constraints of cost and time
- No claims on reliability (lifetime)

11	Test pr	Test procedures		
	11.1	Visual inspection	35	
	11.2	Functioning tests	37	
	11.3	Specific performance tests for components	45	
	11.4	Insulation test	49	
	11.5	Outdoor exposure test	51	
	11.6	Protection against mechanical impacts (IK-code)	53	
	11.7	Protection against dust, water and foreign bodies (IP-code)	53	
	11.8	Shipping vibration test	55	
	11.9	Shock test	55	
	11.10	UV test	57	
	11.11	Thermal cycling test	59	
	11.12	Humidity-freeze test	63	
		Damp heat test		
	11.14	Robustness of terminals test	69	

IEC 62093 Revision

- Standard is in "maintenance" cycle
- Revision gives us the opportunity to respond to market needs for basic/improved qualification and reliability requirements
 - Address large influx of new manufacturers from all over
 - Name overhaul to "Inverter and BOS Qualification Testing Requirements" (e.g.)
 - Remove batteries
 - being handled by another TC
 - Expand context (written with small system perspective)
 - Greatly expand inverter qualification and testing requirements
 - Be conscious of but not overly bound by cost constraints
 - Module manufacturers didn't like it at first either but the value is clear
 - Don't hamper innovation of reliability approaches practiced by experienced players

Environmental Test Subcommittee

- Paul Parker SolarBridge, Test subcommittee chair
- Peter Hacke NREL
- Chris Deline NREL
- Jon Kalfus Independent Consultant
- Harry McLean Enecsys
- Mike Fife AEI
- Mike Silverman Ops A La Carte
- Sig Gonzalez Sandia
- Greg Ball IEC 62093 committee chair

- Team first assembled Feb '12
- Draft inverter test document completed Feb '13

Highlights of Subcommittee Draft of Expanded Testing

Four categories of PV inverters

- Category 1: Inverter assemblies (e.g. < 700W AC)
- Category 2: Wall mounted assemblies, e.g. string inverters and small 3-phase inverters
- Category 3: Free-standing single bay assemblies (e.g. 100 kW)
- Category 4: Free-standing multi-bay assemblies (e.g. 500 kW)

Two Levels of test requirements, level chosen by manufacturer dependent on target lifetime and business priority

- Level 1: minimum set of requirements, typically used for shorter lifetime products, e.g.,10 year target design life
- Level 2: more aggressive requirement for longer lifetimes, e.g., >20 years design life
- Or... maybe Level 1 and Level 2 becomes size based

Environmental Tests

Highly Accelerated Stress Test (HALT)

- Test beyond spec, step stress to failure (identify design margin)
 - Cold Step Stressing
 - Hot Step Stressing
 - Rapid Thermal Cycling
 - Vibration Step Stressing
 - Combined Environments

Damp Heat (DH)

- 85C / 85% RH -- Identifies corrosion related mechanisms

Humidity Freeze (HF)

 85°C / 85% RH followed by -40C -- Identifies weaknesses in environmental protection design

High Temperature Operating Bias (HTOB)

- 85°C / 85% RH -- identifies thermally activated mechanisms

Thermal Cycle (TC)

- -40°C to 85°C -- Identifies mechanisms related to thermo mechanical cyclic fatigue

Unique aspects of proposed testing

Powering and real time monitoring critical

- Many failure mechanisms require voltage / power to activate
- Frequent functional monitoring (<= 1minute intervals)
- AC and DC power cycling required

Test beyond specification

- Required to accelerate failure mechanisms
- Level 1: + 10°C beyond spec
- Level 2: + 20°C above spec

Prioritizing failure modes

- Class 1: Catastrophic hardware failure. Unit under test fails to produce power under all test conditions
- Class 2: Failure requiring an AC and / or DC power cycle to return to normal operation
- Class 3: Soft failure under a specific test condition
- Class 4: Error in data reporting accuracy

Issues and Status

- Draft received numerous comments from WG6 and was discussed at length at Sydney meeting in April
- Considerable pushback from large inverter representatives in WG6
 - Concerns with testing beyond spec
 - Concerns with cost
 - Cost of performing tests
 - Cost and availability of test samples, especially for large systems
 - Concerns that HALT tests aren't representative of field failure mechanisms
 - nor are they better than tests developed from specific field experience
- So... need additional large power inverter participants
 - Passage of new revision depends on consensus
 - Make-up of some voting national committees is manufacturer heavy
 - Also need large customers and users for support
- How to enforce use of standard
 - IEC standard has to be adopted by countries
 - May be market driven rather than imposed

Next Steps

- Revise current draft addressing WG comments
 - Hopefully improve large inverter approach with additional participants
- Develop Design Verification Testing section
- Clean up and edit remainder of main document
- Submit as a Committee Draft (CD) by end of year for review / comment by all national committees
- Address comments and submit for vote

Thank You!

For more information: greg.ball@dnvkema.com

www.dnvkema.com

IEC 62093 -- References

- References numerous IEC standards for general environmental testing, i.e. cross industry
 - IEC 60068 Series covering:
 - Vibrations, robustness of terminations, shock, damp heat (steady state and cyclic, hammer, temperature/humidity chambers.
 - 60721 Classification of environmental conditions
 - 62262 Enclosure protection from external mechanical impacts (IK code)
 - 60529 Enclosure protection from environment (IP code) -- similar to NEMA rating
- Report per requirements of ISO/IEC 17025
 - General requirements for the competence of testing and calibration laboratories

